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Conservation of circulation in magnetohydrodynamics

Jacob D. Bekenstefnand Asaf Oroh
The Racah Institute of Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
(Received 31 January 2000

We demonstrate at both the Newtonian dgdneral relativistic levels the existence of a generalization of
Kelvin's circulation theorenifor pure fluidg that is applicable to perfect magnetohydrodynamics. The argu-
ment is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation
law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct
from magnetic ropes or fluid vortices.

PACS numbgs): 95.30.Qd, 52.65.K], 52.36.q, 95.30.Sf

[. INTRODUCTION axisymmetry, while it is well known that Kelvin's theorem
requires neither of these.

Kelvin's theorem on the conservation of circulation of a  In the present paper we use the least action principle to
simple perfect fluid has played an important role in the de-give a rather straightforward existence proof for a generically
velopment of hydrodynamics. For instance, it shows that poeonserved hybrid velocity—magnetic field circulation within
tential flows are possible, that isolated vortices can exist, thahe framework of perfect MHD which does not depend on
they obey the Helmholtz laws, etc. Kelvin's theorem is valid spacetime symmetries. We do this at both the Newtonian
only for flows in which the body force per unit mass is a (Sec. ) and general relativisticSec. Il)) levels; the impor-
gradient; mostly this includes incompressible or isentropidance of MHD effects in pulsars, active galactic nuclei, and
flows of one-component fluids. cosmology underscores that this last arena is not just of aca-

Most flows in geophysics and astrophysics are more comd€mic importance.
plicated. In particular, many fluids in the real world carry ~AS mentioned, we approach the whole problem not from
magnetic fields: they are magnetofluids. Yet the LorentZduations of motion, but from the least action principle.
force per unit mass on a magnetofluid is almusvera per- Lagrangians for npnrelathlSth pure perfect flow have been
fect gradient. Thus the circulation theorem in its original proposed by Herive[3], Eckart[4], Lin [5], Seliger and

form is almost never true in magnetohydrodynanid$iD). Witham [6], Mittag, Stephen, ar_1d Yourgrad], _an(_:l othe_rs.
Must we then surrender the many insights that Kelvin's theo-Many of the proposed Lagrangians necessarily imply irrota-

USt W y Insig tional flow, i.e., not generic flow, a deficiency that is often
rem conferred on pure hydrodynamics?

. . ) missed by the authors. LifB] introduced a device that al-

_ Not necessarily. One might speculate that a suitable cony, s yortical flows to be encompassed. This device was used
bination of fluid velocityv and magnetic inductio may  p geliger and Witham. Lagrangians for nonrelativistic per-
inherit the property of having a “circulation” on a closed fgct MHD flow in Eulerian coordinates have been proposed
curve which is preserved as that curve is dragged with th%y Eckart[8], Henyey[9], Newcomb[10], Lundgren[11],
magnetofluid. Such conserved circulation might play as usegnd others.
ful a role in MHD as has Kelvin’s circulation in pure fluid In special relativity Penfiel@i12] proposed a perfect fluid
dynamics. For example, it might help characterize a set of agrangian that admits vortical isentropic flow. The early
magnetoflows as being potential in some sense, with consegreneral relativistic Lagrangian of Ta(ib3,14] as well as the
guent simplification of this intricate subject. Or it might help more recent one by Kodant al. [15] describe only irrota-
to characterize a new type of vortex, a hybrid vorticity— tional perfect fluid flows. The Lin device is incorporated by
magnetic rope. In view of the importance of the vortex phe-Schutz[16], whose perfect fluid Lagrangian admits vortical
nomenon in contemporary physics, this last possibility is byas well as irrotational flows in general relativity. Carter
itself ample reason to delve into the subject. [17,18 introduced Lagrangians for particlelike motions from

Two decades ago, Bekenstein and E. drbjrdiscovered,  which can be inferred the properties of fluid flows, including
with the formalism of relativistic perfect MHD, a circulation vortical ones. Achterberffl9] proposed a general relativistic
theorem of the above kind. Although some of its conseMHD action, which, however, describes only “irrotational”
qguences for new helicity conservation laws have been exflows. Thompsor20] used this Lagrangian in the extreme
plored[2], this new conserved circulation has remained ob-+elativistic limit. Heyl and Hernquisf21] modified it to in-
scure. Contributing to this, no doubt, is the fact that it hasclude QED effects. In this paper we follow mostly Seliger
only been derived relativistically, and that this derivation isand Witham[6] and SchutZ16].
an intricate one, even for relativistic MHD. In addition, In Sec. Il A we propose a nonrelativistic MHD Lagrang-
Oron’s derivation assumes both stationary symmetry andéan, and show in Secs. IIB and Il C that it gives rise to the

correct equations of motion for the density, entropy, velocity,
and magnetic fields in Newtonian MHD. In Sec. IID we

*Electronic address: bekenste@vms.huiji.ac.il derive from it the conserved circulation, defined in terms of a

Electronic address: asafo@alf.fiz.huiji.ac.il new vector fieldR, and discuss its invariance under redefi-
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nition of R. Section Il E furnishes two examples of the con- Here the actiorS is a functional of various field$,(r,t),
served circulation in action. In Sec. lll A we collect all the a=1,2, .. .. Onevaries eachf,, transfers time and space
equations of motion of general relativistic MHD, and pro- derivatives of each variatioaf, to the adjacent factor by
pose a general relativistic MHD Lagrangian in Sec. Ill B. integration by parts, and sets to zero the overall coefficient of
Sections IIIC and llID recover all the relativistic MHD the baredf,. This gives us the Lagrange-Euler equation
equations of motion from it. Finally, in Sec. Ill E we gener-

alize the conserved MHD circulation to the general relativ- p L N oL B %_0 27
istic case. AETERN) Vit of, :
II. VARIATIONAL PRINCIPLE IN EULERIAN It is usually more convenient to get the equation for efgch
COORDINATES ab initio by the above procedure, rather than by using Eg.
(2.7.

A. The Lagrangian density We now propose the following Lagrangiatensity for

Perfect MHD describes situations where the flow is non-MHD flow of a perfect infinitely conducting fluid which in-
dissipative, and, in particular, when the magnetoflow hasorporates Eq92.1)—(2.4), as three Lagrange constraints
“infinite conductivity,” and where Maxwell’s displacement
current may be neglected in Amgés equation. We shall ~ £=pv?/2—pe(p,s)—pU—B?/(8m)+ [ dp+ V- [(pV)]
adopt this approximation. We work in Eulerian coordinates:
all physical quantities are functions of coordinatesor r T 7ld(ps)+ V- (pSV) ]+ A[d(py) + V- (pyV)]
that describe a fixed point in space. We first summarize the +K-[3,B—V X (vXB)]. (2.9
MHD equations. We work in units for which=1.

First of all, the fluid obeys the equation of continui ( |n the above,(p,s) is the thermodynamic internal energy
=49l at) per unit mass; in the total Lagrangian the corresponding total

_ internal energy enters as a potential energy. The magnetic
dp+V-(pv)=0, 2.0 energy, the volume integral &?/(8), also enters the total
Lagrangian as a potential energy.

In Eq. (2.8) ¢,n are Lagrange multiplier fields that lo-
cally enforce the conservation law®.1), (2.2), as may be
verified by varying with respect to these multiplieks.is a
triplet of Lagrange multiplier fields that enforce the field-
2.2 freezing constraint Eq2.4): varying with respect tK re-

produces Eq(2.4) at every point and time. Finally\ is a
Lagrange multiplier field that enforces the Lin constraint on
g_new fieldy:

wherep(r,t) is the mass density per unit volume of the fluid
andv(r,t) is the fluid’s velocity field. Second, since there is
no dissipation,s, the entropy per unit mass, must be con-
served along the flow:

Ds=4,s+v-Vs=0.

Here we have defined the convective derivaidewhich in
Cartesian coordinates has the same form for scalars or ve
tors. With the help of Eq(2.1) this equation can be written

as a(py)+V-(pvy)=0 or Dy=0. (2.9

a(psS)+V-(psv)=0. (2.3  Here we have used E@.]) to reduce to the second form.
Lin’s field v, like s, is conserved along the flow, but unlike
Third, “infinite conductivity” implies that E+ (v/c)xB it does not occur elsewhere in the Lagrangian. Lin interprets
=0, whereE and B are the electric and magnetic fields, y(r.t) as one of the three initidlagrangiancoordinates that
respectively. Combining this with Faraday’s equation yields'abel each fluid element. But whatever the interpretation, the

the so-called field-freezing equation condition (2.9) is essential so that the flow can be vortical
also in the limitB— 0. This matter is further discussed in the
4B=VX(VXB), (2.4  following section.
which implies Alfven’s law of conservation of the magnetic B. The equations of motion

flux through a closed loop moving with the flow. Finally, the c ; ;

: L an our proposed Lagrangian density reproduce all the
evolut§|on of the velocity field is governed by the MHD Euler equations of motion of perfect MHD flow? We have already
equation, seen that it does reproduce E¢a.1), (2.2), and(2.4). Let us
(VXB)XB now vary vy to get

pDV==Vp=pVUt+—77—, @9 DA=0, 2.10

wherep is the fluid’s pressurénhere assumed isotropjand  so that\, like vy, is conserved with the flow. Both this and
U(r,t) is the gravitational potential. Eqg. (2.9 will be essential in demonstrating the existence of
The least action principle is in general the new conserved circulation. Next we varyemembering
that (9e/ 3s),, is just the fluid’'s temperaturg, we have

6S[fa]zb‘f dtf dirL(f,,0,f,,Vi)=0. (2.6 Dy=—T 2.19)
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which establishes thay decreases along the flow. The next Taking the curl of this equation we get the more convenient
variation is one with respect tp. Recalling that §e/dp)s  one

=plp?, introducing the enthalpy per unit mass= e+ p/p,
and using Eqs(2.10 and(2.11), we get HR=VX[VXR=B/(4m)]=VX(VXR)—J. (2.17)

Here J=V XB/4m is the electric current density coming
from Ampeae’s equation. Notice the similarity between Eq.

f (2.17 and(2.4). Equation(2.17) says that the rate of change
of the flux of R through the surface spanning a closed curve
carried with the flow equals minus the flux of the electric
current density through that curve.

Dop=v?/2—w+T—U. (2.12

When we varyv in the action we may take advantage o
the identity V-(AXB)=B-VXA—-A-VXB and Gauss’s
theorem to flip the curl operation frodv X B ontoK. Then
the identityA-BXC=—B-AXC helps to shift thedv into
the position of a factor in a scalar product. We may then )
factor out the commomv and isolate the vector equation C. The MHD Euler equation

We now show that the Lagrangian dengi#y8) yields the

v=V ¢+ yVA+sVy+Q, (2.13 correct MHD Euler equation. We first operate with the con-
vective derivativeD on Eq. (2.13 remembering thaDs
Q=BXR/p, (2.19 =0 andDy=0:
whereR=V XK. This is neither a solution fov (A and » Dv=DV¢+yDVA+sDV#,+DQ. (219

not knowr), nor an equation of motionv(appears undiffer- ; .

entiated. In the next subsection we show that this prescrip-We now use the identity

tion for v leads to the MHD Euler equatiaf2.5). DV=VD—(Vv)-V, (2.19
Expression(2.13 shows the importance of including

Lin’s field y. For suppose we consider an unmagnetized fluidvhere in Cartesian coordinates

in isentropic 6= const) flow. Withouty the expression fov

is a perfect gradient, which means the proposed Lagrangian [(VV)- V]-EE % i (2.20

density describes only irrotational flows, a small subset of all T ox o '

possible ones. It is well knowf6,7] that this problem does

not appear when one couches the problem in Lagrangialft conjunction with Egs.(2.10—(2.12 to transform Eq.

coordinates because one gets then an equation, nef bart (2.18 into

for the fluid’s acceleration. Lin’$5] way out of this diffi-

culty is to remember that the initial coordinates of the fluid Dv=V (0*2-W+Ts=U)=sVT-s(VV)- V7

element are maintained throughout its flow. These coordi- —(VV)-Vé—y(VVv)-VA+DQ. (2.21
nates “label” the element, and this can be interpreted as a
triplet of constraintsone for each coordinatef the form From the thermodynamic identitdw=Tds+dp/p we

\i(db;/9t+Vhb;), whereb is the initial vector coordinate for infer

the element in question. Lundgrgéhl] used this triplet form

for the MHD case. It was later showgee, for exampld6]) —Vw+TVs=-Vp/p, (2.22
that the triplet can be reduced to a single constraint with the .
help of Pfaﬁ)‘f’s theorem. One thus returr?s to fof@®) of the 2nﬂ tmzscljsgig:\ilgglze/;r:b(Ve\llr)lé:/o’ Wh\:\e’iﬁ tg(e r;g)a;llk?gsoéthe
Lagrangian density and E¢R.13 for the fluid velocity. The (292]) {UINS into y 9y 4-20. Q.
vorticity is now (still excludingB) '

Dv=—-Vp/p—VU+(Vv)-(v—=V¢—sVy—yVAN)+DQ.
0=V Xv=VyXVA+VsXVy, (2.15 pip (VW)-{ ¢ 7= ¥V (2(2?3)

so we see that isentropic vortical flow is possible. Finally, comparing with Eq(2.13 we see that the last brack-
In the MHD case, the magnetic term in E@.13 con-  ets stand foQ so that

tributes to the vorticity. Henyey9], who suggested a La-

grangian density similar to ours, occasionally dropped the Dv=-Vp/p—VU+(Vv)-Q+DQ. (2.24

Lin term in the MHD case. However, we shall retain the Lin Th tic t id h d the Eul
term throughout. It might seem peculiar at first that adding a us, magnetic ferm aside, we have recovere e e

constraint like Lin’s permits the appearance of squtionsequation(z'a'
i bp We now go on to calculate th® dependent terms. We

(vortical) that were forbidden before it was imposed. But we ite th " ¢ Uit 1
must remember that we add to the Lagrangian not only gnay rewrte the equation of con inuite.1) as

constraint, but also a new degree of freedg(n,t), and it is Dp=— V.- 29
natural that with more degrees of freedom the class of al- P py-V. (2.29
lowed flows will expand. With this, the Gauss laW -B=0, and the identityV X (A

Finally, we varyB in the action; by similar manipulation x B)=B-VA—BV-A—A.VB+AV.B, Eq. (2.4 may be
to those that gave Eq2.13 we get recast in the well known form

9K =vxR—B/(4m). (2.16 D(B/p)=[(Blp)-V]v. (2.26
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Analogously, becaus€-R=0, Eq.(2.17) may be putinthe in time as a passive vector, i.e., in accordance with the
form frozen-in field equatiori2.4). Comparing with Eq(2.17) we
see thaR+kb andR obey the same equation, and both are
DR=(R-V)v—=RV.v-J. (220 permanently solenoiddthis property is obviously preserved
by Egs.(2.4) and(2.17) in the MHD approximatioh

Therefore, If in Z we useR+kb in lieu of R to construct the con-
(VV)-Q+DQ=—(Vv)-(RXB/p)—DRXB/p served circulation]” gets the additional contribution
—RXD(B/p)
=—(VV)-(RXB/p)—[(R-V)V]X(B/p) Al'=k i(bx B/p)-dr=k ﬁzB-(erb/p). (2.32

+(V-V)RX(B/p)—RX[(Blp)-V]v

+JXB/p. (2.28  Here we have used a well known vector identity. Now by

) _ ) analogy withB, b obeys Eq.(2.26), which tells us that any
~ The four terms in the second version of EB.28 involv- o elements of the fluid permanently lie on one and the
ing derivatives ofs can be shown to cancel out by expandingsame line ot/ p, and their distance, if small, is proportional
them Ol_Jt in Carte&anpoordmates. Hence, 24 is the {4 |b|/p [22]. We can always makie small. Thendr X b/p is
magnetic Euler equation with the usual Lorentz force pery yectorial element of area of a narrow closed strip carried
unit mass,J X B/p,. in addition to the pure fl_wd terms. The along by the fluid, one of whose edges coincides Witfihe
fact that we obtain the correct MHD equatiof&s1), (2.2,  integral in Eq.(2.32 is just the flux of magnetic induction
(2.4), and (2.5 is testament to the correctness of our pro-through this strip(not through the space bounded by the
posed Lagrangian density E(.8). Note that Lin's fieldy  ggrip) “and we know this is conserved by virtue of Alfve

has disappeared from the final equation of motion. law.
Thus with the chang&R—R+kb we added some con-
D. Circulation conservation law served magnetic flux tb', and did not get a new conserved

With the help of the above formalism, we can now provecirculation. The MHD flow {B,v,p,p} is evidently un-
the existence of a generalization of Kelvin's circulation theo-changed because the MHD Euler equati@®) does not
rem applicable to perfect MHD. Let us calculate the lineCONtainR, so we must conclude that in the expressionvor
integral of the vector Egs.(2.13, (2.14), the change of th€ term must be com-

pensated by suitable changes in the Lagrange multipiers
Z=v+RXBl/p (229  +syp and\ (recall that we are working witls= const). In-
o _ ) deed, the initial choice o involves a choice of two func-
along a closed curvé drifting with the fluid: tions because of th€ -b=0 constraint, so that the two func-
tions ¢+s» and\ are just enough to absorb the charigje
r= jGZdr. (2.390  —R+kb thus generated and leaveunchanged. It is not
c possible to eliminateR altogether by the changR—R
_ o _ +kb becauser andb obey different equations. This means
According to Eq.(2.13 this integral is the circulation conservation law we have found cannot be
reduced to an Alfve type law; it is a new law.
I'= j;v¢.dr+ fﬁ yVA-dr+ §sv n-dr. (2.31) In Sec. Il E we shall discuss the freedom inherenRin
c c c by a covariant procedure. Fixing the freedom is a necessary

step in any attempt to exhibit explicitly the conserved circu-
The term involving¢ obviously vanisheswe assume all the |ation.

Lagrange multipliers are single valuedror like reason so
does the term involvingy in the isentropic $=const) case
ass can be taken out of the integral. The middle integral can E. Examples

be written$yd\, whered\=V\ -dr. But Egs.(2.9 and First consider a situation where the fluid is isentropic but
(2.10 tell us that bothy and\ are conserved along the flow. not flowing: v=0. It follows from Eq. (2.1) that p=po(r),

Hencel' remains constant as drifts along with the flow. 5.4 from Eq.(2.4) thatB=By(r). From these facts and Eq.
Since, in the limiB—0, I' becomes Kelvin's circulation, we (2.17) we see that

have found an extension of Kelvin's theorem to perfect
MHD. Obviously the conservation df implies the conser- R=—tV XBy(r)/(4m)+Ry(r). (2.33
vation of the flux ofV XZ throughC.

The vector fieldR is not unique for a given physical situ-
ation. For example, the chand@—~R+kB (k a real con- Although the physical quantities are stationdRyis not. This
stan) leaves invariant all equations of motion, E48.9—  is so because, like the electromagnetic potenRals not a
(2.14, (2.17, and (2.24, as well as the conserved measurable quantity, being subject to “gauge chang@s”
circulation expression$2.29 and (2.30. In addition, sup- —R+b as already discussed. According to Eg.29 the
pose that at time&=0 we define an arbitrary solenoidal conserved circulatiofaround a contour fixed in space be-
(divergence-fregfield b all over the flow, and then evolve it causev=0) should be
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=Vw. Taking the integral round of both sides of Eg.

f#‘(VXBO)XBO f#ROX Bo Again, by the isentropic condition we can writép/pg
lr=—t @ ——>———-dr+ .
¢ (2.38 we have

4mpg c 4mpo

(2.39

On the face of it, the time dependence of the first term in this _ % 02pdo=
simple situation puts the claimed circulation conservation c
law in jeopardy. However, according to the magnetic Euler
equation (2.5), the first integrand here is equal U Substituting from Eq(2.39 and Eq.(2.37) into Eqg. (2.36
+Vp/py which, by virtue of Eq.(2.19 and the isentropic we get
nature of the fluid, is a perfect gradiefibr isentropic flow
Vp/po=Vw). Hence the first integral vanishes, and the cir- B 2 2 2
culation is indeed time independent as required by our theo- I'= ﬁjﬂg depo+t ﬁ,ﬂe dQ-+t ﬁﬂ ede
rem.

As a second example consider an axisymmetric differen- _ ) t > 5
tially rotating fluid exhibiting a purely poloidal magnetic - ﬁﬂe d¢’0+§ ﬁd(ﬂ %)
field. Let the flow also be isentropic and stationary. We
choose to work in cylindrical coordinatég, ¢,z}; the caret _ )
will denote a unit vector in the stated direction. It then fol- - ﬁﬂg d¢o, (2.40
lows thatp= po(r), B=By(r), andv= Q0 ¢, whereQ(g,z)
is the angular velocity of the fluid. It is well knowi23,24  andT is indeed time independent. Note that it is possible to
that for axisymmetric fields the curl of a poloidal field is a add toR in Eq. (2.35 an arbitrary time independent solenoi-
toroidal one, and the toroidal field has onlygacomponent.  dal vector fieldRy(r) which satisfiefRyx v=V y. However,
Therefore, the electric current density- VX B/(4) is ev-  as already stressed in the previous subsection, this will only
erywhere collinear withv and time independent. Since the add toI" a time independent quantity.
problem is stationary{) satisfies Ferraro’$25,24 law of It is important to note that, although the example specifi-
isorotationB- VQ=0. In addition the field must be torque- cally relates to an axisymmetric problem, E8.35 applies
free[24], i.e., no Lorentz force in thé direction. This con- (0 all stationary MHD flows that have collinear withv.
dition is identically satisfied for a purely poloidal field. Com- Accordingly, I will be conserved in all such flows.
bining all of the above we get the following solution of Eq.
(2.17: Ill. RELATIVISTIC VARIATIONAL PRINCIPLE

Bo
-dr. (2.39
c4mpo

R=—tJ. (2.35 In this section we formulate a Lagrangian density for
MHD flow in the framework of general relativitfGR).
According to Eq.(2.29 the conserved circulation should Greek indices run from 0 to 3. The coordinates are denoted

be x%=(x%x*,x2,x3); x° stands for time. A comma denotes the
usual partial derivative; a semicolon covariant differentia-
JX By tion. Our signature i§—,+,+,+}. We continue to take
I'= §Q92d¢—t 3€ -dr, (236 =1.
c c4mpo

where we have exploited the axisymmetry to rewrite the first A. Relativistic MHD equations

term. We now verify that this circulation is indeed con-  The general relativistic equations for MHD were formu-
served. Because of the differential rotation, the contbis  lated by Lichnerowicz[26], Novikov and Thorne[27],
gradually deformed in the azimuthal direction. The differ- Carter{17], Bekenstein and Orgi], and others. The role of
enced¢ in the azimuthal coordinates between two infinitesi-the mass conservation equati@l) is taken over by the law
mally close fluid elements lying o@i can be written asl¢ of particle number conservation,

=d¢o+tdQ where d¢, is the initial difference in azi-

muthal coordinates whilel() is the difference between the N%=(nu®);,=0, CHY

elements’ angular velocities. Hence we have ) ) )
whereN“ is the particle number four-current densitythe

particle proper number density, anf the fluid four-velocity
%QQde’: %QQZd%H i;QQZdQ- (237 field normalized byu®u,=—1. If s represents the entropy
¢ ¢ ¢ per particle(not per unit mass as in Sec),lthen the assump-

i . i fideal adi ic flow, Eq2.2), in the f
Note that the first term is time independent while the seconéIono ideal adiabatic flow, E¢2.2), can be put in the form

one is linear in time. ay e —
The magnetic Euler equatiof2.5) in cylindrical coordi- (N%),=0or u%s,,=0. 32

nate reads Because the flow is assumed adiabatic, the energy-

momentum tensor for the magnetized fluid is that of an ideal
(2.39 fluid augmented by the electromagnetic energy-momentum
4mpo tensor:

- A% JXB
—nggz—p—f—VU+ 3
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TeB= pgaﬁ+(p+p)uwuﬁ+(|:w|:l3y_ %Fyﬁpysgab‘)/(mﬂ_ and(3.12. Like Schutz we include Lin’s term, which proves
(3.3y  essential to our subsequent proof of the existence of a circu-

) ) lation theorem. The proposed Lagrangian density is
Here p represents the fluid’s energy proper densibclud-

ing rest massesand p the scalar pressur@again assumed L= —p(n,s)—FaﬁF“B/(16w)+¢N“;a
isotropig, while F*# denotes the electromagnetic field ten- . N N p

sor. As usual the covariant divergenté”., must vanish F(SND) P N(NT) o+ 77F N7 (313
(energy-momentum conservatjonin consequenceTl *%. ;

+u®u,T?2.,=0, which can be recast as Now in GR the scalar densitg(—g)? replaces. in the
ba By oy B action (2.6), and is what enters in the Euler-Lagrange equa-
(p+p)Uiu® p=—(g*"+uu”)p g+ FF g7, /[ (4m). tions (2.7). The covariant derivatives cause no problem; for

34 example, € 9) 2N, .= o[ (—g)¥°N?] ,, whose variation

The terma®=u”u“. ; stands for the fluid’s acceleration four- with respect taN“ is easily integrated by parts. ,
vector. The effects of gravitation are automatically included _AS in the nonrelativistic casep is the Lagrange multi-
by the appeal to curved metric and covariant derivativesPlier associated with the conservation of particle number
This equation parallels E2.5); as usual in GR the pressure constraint, Eq(3.1), 7 is that multiplier associated with the
contributes alongside the energy density to the inertia. Th@diabatic flow constraint, Eq3.2), and\ is that associated

electromagnetic field tensor is subject to Maxwell's equaWith the conservation along the flow of Lin’s quantify We
tions view vy, N, ands as the independent fluid variables, while

andu® are determined by the obvious relations
Feb s=4mje, (3.5

(3.6 —N®N,=n? u*=n"IN< (3.19

F +Fﬁ’)’ya+F')’ayﬁ:0’

aB,y
wherej“ denotes the electric four-current density. Putting a”StrictIy speaking, one should include it a new Lagrange
this together we have the GR MHD Euler equation multiplier times the constrained expressidd®N,,+n2.

(3.7) Rather than clutter ug further, we enforce this constraint

+p)a®=—h*p ;+FFj
(p+p)a PptF g below by hand.

where we have introduced the projection tensor As usual, we view the vector potentidl, , rather than the
electromagnetic  field tensorF,;=Ag,—A..s=As.
hef=g*f+u*uPp. (3.8 —A, s, asthe independent electromagnetic variable. In con-

) _ sequence, the Maxwell Eg€3.6) are satisfied as identities.
The above equations do not completely specify MHDThe |ast term inC enforces the “vanishing of electric field”
flow (as opposed to flow of a generic magnetoflulébr any  constraint, Eq(3.12; =* is a Lagrange multiplier four-vector
flow carrying an electromagnetic field, thantisymmetri¢  fie|d. Because here we enforce the “vanishing of electric
Faraday tensoF ,; may be split into electric and magnetic fie|q” rather than the equivalent flux freezing condition
vectors with respect to the flow: (2.4), the 7 is more likeR of Sec. 11 B. than likeK . Not all
E—F U8 (3.9 of % is ph_ysically mear_1in_gfu|. For suppose we add an arbi-
a T aps ' trary functionf (x#) multiplied byN‘;to 7%, This increments
% _1 5 the Lagrangian density biN“F ,;N”, which vanishes iden-
Ba="F pal?= 7 €gayaf 70" (3.19 tically by the antisymmetry oFaZ. So 7% and 7+ fN are
Here €.z, is the Levi-Civitatotally antisymmetric tensor physically equivalent. We shall exploit this to subtract from
[ €0105= (— ) Y2 with g denoting the determinant of the met- 7" its component alongi®. So henceforth we may take it
ric g,p] and'F 4 is the dual ofF 4. In the frame moving that 7u,=0. L . .
with the fluid, these four-vectors have only spatial parts Much freedom is stil left in7®. Suppose we add to it a
which correspond to the usu& and B, respectively. The (€rm proportional tm~"B*. By Egs.(3.9~(3.11), this adds

inversion of Eqs(3.9) and(3.10) is to the Lagrangian density the ter&),B“. Of course we can-
not take this to vanish at the Lagrangian level because we
Fap=UEg—UgE,+ eaﬁygu“/B‘s. (3.1  have not yet obtained the freezing-in conditi112) from

it. However, it is known thaB“E,= ;e*#7°F ,4F 5. By
For an infinitely conductingperfect MHD fluid, the electric  introducing the potential A, we can write this as
field in the fluid’s frame must vanish, i.e., %[faﬂyaFaﬁAy]-g_%Gaﬁ‘y&Faﬂ;gA,y, where we have used
B B the fact thate®”?° has vanishing covariant derivatives. Ob-
Eo=Fapu”=0. (3.12 viously the last term vanishes by virtue of Maxwell's equa-
tions (3.6), which are identities in the present approach.
When multiplied by ¢ g)/?, the first term becomes a perfect
derivative. Such a term, when added to the integral forming
the Lagrangian, is known not to affect its physical content.
Inspired by Schutz’§16] Lagrangian density for pure flu- Thus r* and 7+ constxn~!B® are physically equivalent,
ids in GR, we now propose a Lagrangian density for GRand this transformation respects the conditigu®“=0 be-
MHD flow which reproduces Eqg3.1), (3.2), (3.5—(3.7), causeB, u“=0 [see Eq.(3.10]. However, there is not

This corresponds to the usual MHD conditier-vXxXB=0.

B. Relativistic Lagrangian density
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enough freedom in the constant to allow us to eliminate the Turn now to the variation oA, . Because of the antisym-

component ofr* alongB“. But in Sec. Ill E we shall exploit
what we have just found.

C. Equations of motion

We can now derive the equations of motion. Variation of
¢ recovers the conservation of particls$. ,. Variation of
N\ with subsequent use of the previous result yields

¥ U=0. (3.15

If we vary v we get

A Lue=0. (3.19
These two results are precise analogs of E@s9) and
(2.10; they inform us thaty and A are both locally con-
served with the flow. In view of the thermodynamic relation
n~Y(aplas),=T, with T the locally measured fluid tempera-
ture, variation ofs gives

un ,=—T, (3.19

this is the analog of Eq2.11).
We now varyN® using the obvious consequence of Eg.

(3.14,

sn=—u,oN (3.18

together with the thermodynamic relatig27] involving the
specific enthalpy,

w=(dpln)s=n"*(p+p); (3.19
we get the GR analog of E§2.13),
Mua:¢,a+sn,a+y)\,a+7ﬂ':aﬁ' (32@

The importance of Lin'sy is again clear here; in the pure
isentropic fluid caseR*#=0 ands= const), the Khalatnikov
vorticity tensor given by

o= (pUpg) o= (uUy) g=(YN g) o= (YN o) g
(3.21)

would vanish in the absence of, thus constraining us to
discuss only irrotational flow.

By contracting Eq(3.20 with u® and usingu, u®
as well as Eq93.12 and(3.16), (3.17), we get the following
GR version of Eq(2.12):

(3.22

Thus the proper time rate of change ¢falong the flow is
just minus the specific Gibbs energy or chemical potential

¢ MN=—u+Ts

The apparent difference between the result here and Eq.

(2.12 stems from the fact that proper time rdteere and
coordinate time ratdthere differ by gravitational redshift

metry ofF .z, the last term of the Lagrangian E®.13 can
be written as ¢*N“— 7*NF)A,, ;. The variation ofA,, in the
corresponding term in the action produces, after integration
by parts, the ternfi(—g)¥4(7*Nf—7AN®)] A, . Because
for any antisymmetric tensor t*#, " (—g)Y4*f
=[(—0)*1*"] 4, this finally leads to the equation
FeP.p=4m(T*NF— 7PN%). ;. (3.23
Comparison with Eq(3.5 shows that this result gives us a
representation of the electric current dengityas the diver-
gence of the bivector®N#— 7#N®. Such a representation
makes the conservation of chargi.(,=0) an identity be-
cause the divergence of the divergence of any antisymmetric
tensor vanishes. This equation is the GR analog of Eg.
(2.17. Formally, Eq.(3.23 determines the Lagrange multi-
plier four-vectorr¢, modulo the freedom inherent in it.

D. MHD Euler equation in general relativity

Our central task now is to show that the equations in Sec.
Il C lead uniquely to the GR MHD Euler equati@8.7). We
begin by writing the Khalatnikov vorticity g, in two forms,

wﬁa:/*L,ﬁua_/*l‘,auﬁ_l—/'l‘ua;ﬁ_/“l‘uﬁ;a1 (324)

as well as by means of E3.20),
©a=SpMa=Sapt VN a= V.ah gt 7% 5F 05
(3.29

Contracting the left hand side of the first wilf, recalling
Eqg. (3.14, and that by normalizatiom“u,.;=0 whereas
uﬁua;ﬁzaa, the fluid’'s four-acceleration, we get

S 5 S
- T ;aFﬁ§+T Fa(s;,B_T F,Bﬁ;a'

wg N*=—nNw g—Nu U“Ug—nNuag=—nhg*u ,—nuag.

(3.2

Now contracting Eq.(3.25 with N* and using Egs.
(3.15—(3.17 and(3.12 to drop a number of terms we get

wgN*=—NnTs g~ 70 F gsN*+ 7F 5 sN*— 7°F 5. ,N°.
(3.27)

By virtue of Eq. (3.2, —nTsg is the same as
—NnThg%s ,. It is convenient to use the thermodynamic
identity du=n"'dp+ Tds, which follows from Eq.(3.19,
and the first land(p/n)=Tds—pd(1/n), to replace in Eq.
(8.27) —nTsg by hg*(—nu ,+p ). Equating our two ex-
pressions fow z,N“ gives, after a cancellation,

—(npagthgp )
- T(S;aFﬁgNa‘i‘ 'T&Fag;ﬁNa_ 'T&Fﬁﬁ;aNa.
(3.28

and time dilation effects. These effects are not noticeable The last two terms in this equation can be combined into

when one compares E¢3.17) with (2.11) because the first

a single one by virtue of Eq3.6), which, as well known, can

refers to locally measured temperature and the second to gltbe written with covariant as well as ordinary derivatives.
bal temperature; these two temperatures differ by the sameurther, by Eq(3.19 we may replacenu by p+p. In this

factors as do proper and coordinate time.

manner we get
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(p+p)ag=—hg*p o+ F g 57N +F g57° N
(3.29
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Given a specific MHD flow as background, let us define a
generic test field ,;= —f 5, that satisfies Maxwell's homo-
geneous equation8.6) as well as the freezing-in condition

The term7’,,N* here can be replaced by two others with the(3 19, e.9.,e,=f,5uf=0. We think off,,; as very weak,

help of Eq.'(3.23) if we take into account thattlﬁ;ﬁzo:
(ptplag=—hgp ,+F gsF 2%, [(47)

+F g sT'N*+F g5(7°N°).,,.  (3.30

so that it does not disturb the MHD flow or the spacetime
geometry; it is a passive tensor. Becatﬂgguﬁ:O, f.p has
only three independent components. Therefore, its full con-
tent is reflected in the “magnetic four-vector'd,
= €545 "°UP, which is obviously orthogonal ta,,. The

We note that the last two terms on the right hand side comiransformationr®— 7*+kn~*b® (k a real constantis not a

bine into (FB,JN“Tﬁ);(; which vanishes by Eq3.12. Now
substituting from the Maxwell equation(8.5 we arrive at
the final equation

(3.3)

which is the correct GR MHD Euler equati@8.7). We have
not used any information about beyond Eq(3.23; hence
Euler's equation is valid for all choices af*. Since we are
able to obtain all equations of motion for GR MHD from our

(p+p)ag=—hg*p ,+Fps°,

symmetry of the Lagrangian. However, it does not disturb
the inhomogeneous Maxwell equatiaidsb) and(3.23). This

is because the change it merely adds to the electric cur-
rent the term K*uf—bPu®).;=(-g) Y (-g)"4b*u?

- bﬁu“)],[,. Because of the conditiogr*=0, we may easily
invert the analog of EQ.(3.1) to get b*uf—bPu
=3e*P7°f 5. But, since (g)*%*#? is just the constant
antisymmetric symbol, our assumed equatibpg ,+f,, s
+f4,..=0 imply that “u’—bPu®).,=0, so that the Max-

H H H e o 1o
Lagrangian density, we may regard it as correct, and go on t§€!l €quations(3.23 are invariant under*— 7+kn""b*.

look at some consequences.

E. New circulation conservation law

Equations(3.20 and(3.15), (3.16 allow us to generalize

the conserved circulation of Sec. IID to relativistic perfect«

MHD. Let I" be the line integral

3€ z,dx%,
c

where( is, again, a closed curve drifting with the fluid, and

r (3.32

Zo=pU,—7PF 4. (3.33
According to Eq.(3.20, z,=¢ ,+Sn ,+ Y\ ,. Sinced ,
is a gradient, its contribution td' vanishes. Likewise, for
isentropic flow §=const) the term involving#n , makes no
contribution tol". Thus

r= %y)\yadx"‘= fﬁyd)\.
C C

By Egs.(3.15 and(3.16) both y and\ are conserved with
the flow. Thusl' is conserved along the flow. Note that by
virtue of y's presencd’ need not vanish.

(3.39

So is the Euler equation, since its derivation used only the
information aboutr* inherent in Eq(3.23.

The expression fou,, Eq. (3.20, does seem to change
under 7*—7r%+kn 1b% and we also note thal'—T
+kén~tbPF ,zdx*. Now since the “magnetic four-vector”
is frozen in, like any sucimfinitesimalfield, it evolves in
such a way thah™'b® gives for all time that part of the
spacetime separation of two neighboring fluid elements that
is orthogonal tou® [1]; cf. the discussion after Eq2.32.
Thusn™'b® can be employed to define a thin closed strip
dragged with the fluid such that one of its edges coincides
with the curveC. Therefore, the incremesin ~*b#F , zdx” is

just the conserved magnetic flux through this strip. Evidently

the transformationr®— 7%+ kn~'b® has not changed the na-
ture of the conservation law fdr, but only added a trivially
conserved quantity to it.

Now the MHD flow {B*,u®n,p,u} is evidently un-
changed because neither the MHD Euler equat&#d) nor
Maxwell's equations were changed, so we must conclude

that, in the expression far®, Eq. (3.20), the change of the

TBFaﬁ term must be compensated by suitable changes in the
pair of Lagrange multipliersp+s» and A (since we are
assumings=const). They are capable of this becab&ehas

only two independent components, for the conditlotu,,

=0 eliminates one of the four. In additidsf* comes from

In the absence of electromagnetic fields and in the nonf,s which satisfies Eqs(3.6); in particular, fi, 5+ f3;,

relativistic limit (u—m wherem is a fluid particle’s rest

+f,3,=0 in the chosen coordinates. But since no time de-

mas$, I' for a curveC taken at constant time reduces to rivatives appear in it, this last equation serves as an initial

Kelvin's circulation. On this ground our result can be con-

constraint orb® just as the Gauss equati® B=0 does for

sidered a generalization of Kelvin’s circulation theorem tothe true magnetic field. Accordingly, one further relation ex-
general relativistic MHD. We have gone here beyond Bekdists between components bf so that the generib® con-
enstein and Oron’s original resilt] in that no symmetry is tains only two free functions. Thus the changerﬁlFaB can

necessary for the circulation to be conserved.

be taken up by changes in the two functiah$ s» and\ so

To manifestly exhibit the conserved circulation, one hasthat nu,, is unchanged.

to know 7* explicitly. The first step is to understand the

Note that it is not possible to “get rid” of* by means of

freedom left in7® beyond that discussed in Sec. Il B. The the transformationr®— 7*+kn~'b® because, as we shall

second is to determine” in a specific flow, exploiting for

make clear presently;* andb® obey different equations of

this the symmetries and other information. Below we addresmotion. Thus there must be a residual partréfthat is not
the first step; the second is left mainly to future publicationschanged by the transformations. It is this part that is respon-
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sible for the conserved circulation, so that the conservatiopendent components i, , and this is enough to find a

of I' cannot be reduced to magnetic flux conservation.
The following algorithm can be used to finct. Max-

solution for an arbitrary field; obeying B,u“=0 (thus
three components at mosif fact, Bs; does not determine

well's inhomogeneous equatiort8.23, which say that the 7, uniquely: if one adds to this last one of the frozerf-if
divergence of a certain tensor vanishes, can always bge discussed earlier in this sectiéwhich also satisfy the

“solved” by the prescription

FoP—4m(T*NF—7AN") =3 e*F7°F 5, (3.39
where the new field”,; just has to satisfy Maxwell's homo-
geneous equation8.6), i.e., 7, ,=A;,— A, 5. Taking the
dual of Eq.(3.395 with the help of the identit)ey,;aﬁe”‘ﬁl‘”
—2(8,185"—8,755") gives

Fys-

(3.39

Contracting this equation with” gives the further require-
ment onF,g:

* Fyﬁ_ 47T€y5aﬁTaNﬁ: -

.7:5YUV= Bg,

(3.37)

where we have used E¢3.10. The F;, can always be

homogeneous Maxwell equation&q. (3.37) is still satisfied
becausd ;,u?=0.

We get7® by contracting Eq(3.35 by ugz and remem-
bering thatF“uz=0 andPuz=0. Thus

T=(8mn) 1e*FY°F sup. (3.39

It is interesting thaB s plays the role of the electric part of
Fs, while 7* enters like the magnetic part of this tensor; cf.
Eqg. (3.10 (but becauseF ;,u?#0, 7 evolves differently
from a magnetic type field lik8“ or theb®). It should also
be clear now that the freedom in redefinig,s— F, s
+f,s is equivalent to the change$— 7%+ kn~b® we con-
sidered earlier in this section. This freedom can be exploited
together with the symmetries to simplify the problem of

solved for: because of gauge freedom there are three indselving explicitly for 7 in any specific MHD flow.
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