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Conservation of circulation in magnetohydrodynamics

Jacob D. Bekenstein* and Asaf Oron†

The Racah Institute of Physics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
~Received 31 January 2000!

We demonstrate at both the Newtonian and~general! relativistic levels the existence of a generalization of
Kelvin’s circulation theorem~for pure fluids! that is applicable to perfect magnetohydrodynamics. The argu-
ment is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation
law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct
from magnetic ropes or fluid vortices.

PACS number~s!: 95.30.Qd, 52.65.Kj, 52.30.2q, 95.30.Sf
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I. INTRODUCTION

Kelvin’s theorem on the conservation of circulation of
simple perfect fluid has played an important role in the
velopment of hydrodynamics. For instance, it shows that
tential flows are possible, that isolated vortices can exist,
they obey the Helmholtz laws, etc. Kelvin’s theorem is va
only for flows in which the body force per unit mass is
gradient; mostly this includes incompressible or isentro
flows of one-component fluids.

Most flows in geophysics and astrophysics are more c
plicated. In particular, many fluids in the real world car
magnetic fields: they are magnetofluids. Yet the Lore
force per unit mass on a magnetofluid is almostnevera per-
fect gradient. Thus the circulation theorem in its origin
form is almost never true in magnetohydrodynamics~MHD!.
Must we then surrender the many insights that Kelvin’s th
rem conferred on pure hydrodynamics?

Not necessarily. One might speculate that a suitable c
bination of fluid velocityv and magnetic inductionB may
inherit the property of having a ‘‘circulation’’ on a close
curve which is preserved as that curve is dragged with
magnetofluid. Such conserved circulation might play as u
ful a role in MHD as has Kelvin’s circulation in pure flui
dynamics. For example, it might help characterize a se
magnetoflows as being potential in some sense, with co
quent simplification of this intricate subject. Or it might he
to characterize a new type of vortex, a hybrid vorticity
magnetic rope. In view of the importance of the vortex ph
nomenon in contemporary physics, this last possibility is
itself ample reason to delve into the subject.

Two decades ago, Bekenstein and E. Oron@1# discovered,
with the formalism of relativistic perfect MHD, a circulatio
theorem of the above kind. Although some of its con
quences for new helicity conservation laws have been
plored @2#, this new conserved circulation has remained o
scure. Contributing to this, no doubt, is the fact that it h
only been derived relativistically, and that this derivation
an intricate one, even for relativistic MHD. In addition
Oron’s derivation assumes both stationary symmetry
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axisymmetry, while it is well known that Kelvin’s theorem
requires neither of these.

In the present paper we use the least action principle
give a rather straightforward existence proof for a generica
conserved hybrid velocity–magnetic field circulation with
the framework of perfect MHD which does not depend
spacetime symmetries. We do this at both the Newton
~Sec. II! and general relativistic~Sec. III! levels; the impor-
tance of MHD effects in pulsars, active galactic nuclei, a
cosmology underscores that this last arena is not just of
demic importance.

As mentioned, we approach the whole problem not fro
equations of motion, but from the least action princip
Lagrangians for nonrelativistic pure perfect flow have be
proposed by Herivel@3#, Eckart @4#, Lin @5#, Seliger and
Witham @6#, Mittag, Stephen, and Yourgrau@7#, and others.
Many of the proposed Lagrangians necessarily imply irro
tional flow, i.e., not generic flow, a deficiency that is ofte
missed by the authors. Lin@5# introduced a device that al
lows vortical flows to be encompassed. This device was u
by Seliger and Witham. Lagrangians for nonrelativistic p
fect MHD flow in Eulerian coordinates have been propos
by Eckart @8#, Henyey@9#, Newcomb@10#, Lundgren@11#,
and others.

In special relativity Penfield@12# proposed a perfect fluid
Lagrangian that admits vortical isentropic flow. The ea
general relativistic Lagrangian of Taub@13,14# as well as the
more recent one by Kodamaet al. @15# describe only irrota-
tional perfect fluid flows. The Lin device is incorporated b
Schutz@16#, whose perfect fluid Lagrangian admits vortic
as well as irrotational flows in general relativity. Cart
@17,18# introduced Lagrangians for particlelike motions fro
which can be inferred the properties of fluid flows, includin
vortical ones. Achterberg@19# proposed a general relativisti
MHD action, which, however, describes only ‘‘irrotational
flows. Thompson@20# used this Lagrangian in the extrem
relativistic limit. Heyl and Hernquist@21# modified it to in-
clude QED effects. In this paper we follow mostly Selig
and Witham@6# and Schutz@16#.

In Sec. II A we propose a nonrelativistic MHD Lagrang
ian, and show in Secs. II B and II C that it gives rise to t
correct equations of motion for the density, entropy, veloc
and magnetic fields in Newtonian MHD. In Sec. II D w
derive from it the conserved circulation, defined in terms o
new vector fieldR, and discuss its invariance under rede
5594 ©2000 The American Physical Society
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PRE 62 5595CONSERVATION OF CIRCULATION IN . . .
nition of R. Section II E furnishes two examples of the co
served circulation in action. In Sec. III A we collect all th
equations of motion of general relativistic MHD, and pr
pose a general relativistic MHD Lagrangian in Sec. III
Sections III C and III D recover all the relativistic MHD
equations of motion from it. Finally, in Sec. III E we gene
alize the conserved MHD circulation to the general relat
istic case.

II. VARIATIONAL PRINCIPLE IN EULERIAN
COORDINATES

A. The Lagrangian density

Perfect MHD describes situations where the flow is no
dissipative, and, in particular, when the magnetoflow h
‘‘infinite conductivity,’’ and where Maxwell’s displacemen
current may be neglected in Ampe`re’s equation. We shal
adopt this approximation. We work in Eulerian coordinat
all physical quantities are functions of coordinatesxi or r
that describe a fixed point in space. We first summarize
MHD equations. We work in units for whichc51.

First of all, the fluid obeys the equation of continuity (] t
[]/]t)

] tr1“•~rv!50, ~2.1!

wherer(r ,t) is the mass density per unit volume of the flu
andv(r ,t) is the fluid’s velocity field. Second, since there
no dissipation,s, the entropy per unit mass, must be co
served along the flow:

Ds[] ts1v•“s50. ~2.2!

Here we have defined the convective derivativeD, which in
Cartesian coordinates has the same form for scalars or
tors. With the help of Eq.~2.1! this equation can be written
as

] t~rs!1“•~rsv!50. ~2.3!

Third, ‘‘infinite conductivity’’ implies that E1(v/c)3B
50, whereE and B are the electric and magnetic field
respectively. Combining this with Faraday’s equation yie
the so-called field-freezing equation

] tB5“3~v3B!, ~2.4!

which implies Alfvén’s law of conservation of the magnet
flux through a closed loop moving with the flow. Finally, th
evolution of the velocity field is governed by the MHD Eul
equation,

rDv52“p2r“U1
~“3B!3B

4p
, ~2.5!

wherep is the fluid’s pressure~here assumed isotropic!, and
U(r ,t) is the gravitational potential.

The least action principle is in general

dS@ f a#[dE dtE d3rL~ f a ,] t f a ,“ f a!50. ~2.6!
-

-
s

:

e

-

c-

s

Here the actionS is a functional of various fieldsf a(r ,t),
a51,2, . . . . Onevaries eachf a , transfers time and spac
derivatives of each variationd f a to the adjacent factor by
integration by parts, and sets to zero the overall coefficien
the bared f a . This gives us the Lagrange-Euler equation

] tS ]L
]~] t f a! D1“•S ]L

]“ f a
D2

]L
] f a

50. ~2.7!

It is usually more convenient to get the equation for eachf a
ab initio by the above procedure, rather than by using E
~2.7!.

We now propose the following Lagrangiandensity for
MHD flow of a perfect infinitely conducting fluid which in-
corporates Eqs.~2.1!–~2.4!, as three Lagrange constraints

L5rv2/22re~r,s!2rU2B2/~8p!1f@] tr1“•@~rv!#

1h@] t~rs!1“•~rsv!#1l@] t~rg!1“•~rgv!#

1K•@] tB2“3~v3B!#. ~2.8!

In the above,e(r,s) is the thermodynamic internal energ
per unit mass; in the total Lagrangian the corresponding t
internal energy enters as a potential energy. The magn
energy, the volume integral ofB2/(8p), also enters the tota
Lagrangian as a potential energy.

In Eq. ~2.8! f,h are Lagrange multiplier fields that lo
cally enforce the conservation laws~2.1!, ~2.2!, as may be
verified by varying with respect to these multipliers.K is a
triplet of Lagrange multiplier fields that enforce the fiel
freezing constraint Eq.~2.4!: varying with respect toK re-
produces Eq.~2.4! at every point and time. Finally,l is a
Lagrange multiplier field that enforces the Lin constraint
a new fieldg:

] t~rg!1“•~rvg!50 or Dg50. ~2.9!

Here we have used Eq.~2.1! to reduce to the second form
Lin’s field g, like s, is conserved along the flow, but unlikes
it does not occur elsewhere in the Lagrangian. Lin interpr
g(r ,t) as one of the three initialLagrangiancoordinates that
label each fluid element. But whatever the interpretation,
condition ~2.9! is essential so that the flow can be vortic
also in the limitB→0. This matter is further discussed in th
following section.

B. The equations of motion

Can our proposed Lagrangian density reproduce all
equations of motion of perfect MHD flow? We have alrea
seen that it does reproduce Eqs.~2.1!, ~2.2!, and~2.4!. Let us
now varyg to get

Dl50, ~2.10!

so thatl, like g, is conserved with the flow. Both this an
Eq. ~2.9! will be essential in demonstrating the existence
the new conserved circulation. Next we varys; remembering
that (]e/]s)r is just the fluid’s temperatureT, we have

Dh52T, ~2.11!
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which establishes thath decreases along the flow. The ne
variation is one with respect tor. Recalling that (]e/]r)s
5p/r2, introducing the enthalpy per unit massw5e1p/r,
and using Eqs.~2.10! and ~2.11!, we get

Df5v2/22w1T2U. ~2.12!

When we varyv in the action we may take advantage
the identity “•(A3B)5B•“3A2A•“3B and Gauss’s
theorem to flip the curl operation fromdv3B onto K . Then
the identityA•B3C52B•A3C helps to shift thedv into
the position of a factor in a scalar product. We may th
factor out the commondv and isolate the vector equation

v5“f1g“l1s“h1Q, ~2.13!

Q[B3R/r, ~2.14!

whereR[“3K . This is neither a solution forv (l and h
not known!, nor an equation of motion (v appears undiffer-
entiated!. In the next subsection we show that this prescr
tion for v leads to the MHD Euler equation~2.5!.

Expression ~2.13! shows the importance of includin
Lin’s field g. For suppose we consider an unmagnetized fl
in isentropic (s5const) flow. Withoutg the expression forv
is a perfect gradient, which means the proposed Lagran
density describes only irrotational flows, a small subset of
possible ones. It is well known@6,7# that this problem does
not appear when one couches the problem in Lagran
coordinates because one gets then an equation, not forv, but
for the fluid’s acceleration. Lin’s@5# way out of this diffi-
culty is to remember that the initial coordinates of the flu
element are maintained throughout its flow. These coo
nates ‘‘label’’ the element, and this can be interpreted a
triplet of constraints~one for each coordinate! of the form
l i(]bi /]t1“bi), whereb is the initial vector coordinate fo
the element in question. Lundgren@11# used this triplet form
for the MHD case. It was later shown~see, for example,@6#!
that the triplet can be reduced to a single constraint with
help of Pfaff’s theorem. One thus returns to form~2.8! of the
Lagrangian density and Eq.~2.13! for the fluid velocity. The
vorticity is now ~still excludingB)

v5“3v5“g3“l1“s3“h, ~2.15!

so we see that isentropic vortical flow is possible.
In the MHD case, the magnetic term in Eq.~2.13! con-

tributes to the vorticity. Henyey@9#, who suggested a La
grangian density similar to ours, occasionally dropped
Lin term in the MHD case. However, we shall retain the L
term throughout. It might seem peculiar at first that addin
constraint like Lin’s permits the appearance of solutio
~vortical! that were forbidden before it was imposed. But w
must remember that we add to the Lagrangian not onl
constraint, but also a new degree of freedomg(r ,t), and it is
natural that with more degrees of freedom the class of
lowed flows will expand.

Finally, we varyB in the action; by similar manipulation
to those that gave Eq.~2.13! we get

] tK5v3R2B/~4p!. ~2.16!
n

-
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Taking the curl of this equation we get the more conveni
one

] tR5“3@v3R2B/~4p!#5“3~v3R!2J. ~2.17!

Here J5“3B/4p is the electric current density comin
from Ampère’s equation. Notice the similarity between E
~2.17! and~2.4!. Equation~2.17! says that the rate of chang
of the flux ofR through the surface spanning a closed cu
carried with the flow equals minus the flux of the elect
current density through that curve.

C. The MHD Euler equation

We now show that the Lagrangian density~2.8! yields the
correct MHD Euler equation. We first operate with the co
vective derivativeD on Eq. ~2.13! remembering thatDs
50 andDg50:

Dv5D“f1gD“l1sD“h1DQ. ~2.18!

We now use the identity

D“5“D2~“v!•“, ~2.19!

where in Cartesian coordinates

@~“v!•“# i[(
j

]v j

]xi

]

]xj
, ~2.20!

in conjunction with Eqs.~2.10!–~2.12! to transform Eq.
~2.18! into

Dv5“~v2/22w1Ts2U !2s“T2s~“v!•“h

2~“v!•“f2g~“v!•“l1DQ. ~2.21!

From the thermodynamic identitydw5Tds1dp/r we
infer

2“w1T“s52“p/r, ~2.22!

and we also have“v2/25(“v)•v, where the meaning of the
right hand side is clear by analogy with Eq.~2.20!. Thus Eq.
~2.21! turns into

Dv52“p/r2“U1~“v!•~v2“f2s“h2g“l!1DQ.
~2.23!

Finally, comparing with Eq.~2.13! we see that the last brack
ets stand forQ so that

Dv52“p/r2“U1~“v!•Q1DQ. ~2.24!

Thus, magnetic term aside, we have recovered the E
equation~2.5!.

We now go on to calculate theQ dependent terms. We
may rewrite the equation of continuity~2.1! as

Dr52r“•v. ~2.25!

With this, the Gauss law“•B50, and the identity“3(A
3B)5B•“A2B“•A2A•“B1A“•B, Eq. ~2.4! may be
recast in the well known form

D~B/r!5@~B/r!•“#v. ~2.26!
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PRE 62 5597CONSERVATION OF CIRCULATION IN . . .
Analogously, because“•R50, Eq.~2.17! may be put in the
form

DR5~R•“ !v2R“•v2J. ~2.27!

Therefore,

~“v!•Q1DQ52~“v!•~R3B/r!2DR3B/r

2R3D~B/r!

52~“v!•~R3B/r!2@~R•“ !v#3~B/r!

1~“•v!R3~B/r!2R3@~B/r!•“#v

1J3B/r. ~2.28!

The four terms in the second version of Eq.~2.28! involv-
ing derivatives ofv can be shown to cancel out by expandi
them out in Cartesian coordinates. Hence, Eq.~2.24! is the
magnetic Euler equation with the usual Lorentz force
unit mass,J3B/r, in addition to the pure fluid terms. Th
fact that we obtain the correct MHD equations~2.1!, ~2.2!,
~2.4!, and ~2.5! is testament to the correctness of our p
posed Lagrangian density Eq.~2.8!. Note that Lin’s fieldg
has disappeared from the final equation of motion.

D. Circulation conservation law

With the help of the above formalism, we can now pro
the existence of a generalization of Kelvin’s circulation the
rem applicable to perfect MHD. Let us calculate the li
integral of the vector

Z5v1R3B/r ~2.29!

along a closed curveC drifting with the fluid:

G5 R
C
Z•dr . ~2.30!

According to Eq.~2.13! this integral is

G5 R
C
“f•dr1 R

C
g“l•dr1 R

C
s“h•dr . ~2.31!

The term involvingf obviously vanishes~we assume all the
Lagrange multipliers are single valued!. For like reason so
does the term involvingh in the isentropic (s5const) case
ass can be taken out of the integral. The middle integral c
be written rCgdl, wheredl[“l•dr . But Eqs.~2.9! and
~2.10! tell us that bothg andl are conserved along the flow
HenceG remains constant asC drifts along with the flow.
Since, in the limitB→0, G becomes Kelvin’s circulation, we
have found an extension of Kelvin’s theorem to perfe
MHD. Obviously the conservation ofG implies the conser-
vation of the flux of“3Z throughC.

The vector fieldR is not unique for a given physical situ
ation. For example, the changeR→R1kB (k a real con-
stant! leaves invariant all equations of motion, Eqs.~2.9!–
~2.14!, ~2.17!, and ~2.24!, as well as the conserve
circulation expressions~2.29! and ~2.30!. In addition, sup-
pose that at timet50 we define an arbitrary solenoida
~divergence-free! field b all over the flow, and then evolve i
r

-

-

n

t

in time as a passive vector, i.e., in accordance with
frozen-in field equation~2.4!. Comparing with Eq.~2.17! we
see thatR1kb andR obey the same equation, and both a
permanently solenoidal@this property is obviously preserve
by Eqs.~2.4! and ~2.17! in the MHD approximation#.

If in Z we useR1kb in lieu of R to construct the con-
served circulation,G gets the additional contribution

DG5k R
C
~b3B/r!•dr5k R

C
B•~dr3b/r!. ~2.32!

Here we have used a well known vector identity. Now
analogy withB, b obeys Eq.~2.26!, which tells us that any
two elements of the fluid permanently lie on one and
same line ofb/r, and their distance, if small, is proportiona
to ubu/r @22#. We can always makeb small. Thendr3b/r is
a vectorial element of area of a narrow closed strip carr
along by the fluid, one of whose edges coincides withC. The
integral in Eq.~2.32! is just the flux of magnetic induction
through this strip~not through the space bounded by t
strip!, and we know this is conserved by virtue of Alfve´n’s
law.

Thus with the changeR→R1kb we added some con
served magnetic flux toG, and did not get a new conserve
circulation. The MHD flow $B,v,r,p% is evidently un-
changed because the MHD Euler equation~2.5! does not
containR, so we must conclude that in the expression forv,
Eqs.~2.13!, ~2.14!, the change of theQ term must be com-
pensated by suitable changes in the Lagrange multiplierf
1sh andl ~recall that we are working withs5const). In-
deed, the initial choice ofb involves a choice of two func-
tions because of the“•b50 constraint, so that the two func
tions f1sh andl are just enough to absorb the changeR
→R1kb thus generated and leavev unchanged. It is not
possible to eliminateR altogether by the changeR→R
1kb becauseR andb obey different equations. This mean
the circulation conservation law we have found cannot
reduced to an Alfve´n type law; it is a new law.

In Sec. III E we shall discuss the freedom inherent inR
by a covariant procedure. Fixing the freedom is a necess
step in any attempt to exhibit explicitly the conserved circ
lation.

E. Examples

First consider a situation where the fluid is isentropic b
not flowing: v50. It follows from Eq. ~2.1! that r5r0(r ),
and from Eq.~2.4! that B5B0(r ). From these facts and Eq
~2.17! we see that

R52t“3B0~r !/~4p!1R0~r !. ~2.33!

Although the physical quantities are stationary,R is not. This
is so because, like the electromagnetic potential,R is not a
measurable quantity, being subject to ‘‘gauge changes’R
→R1b as already discussed. According to Eq.~2.29! the
conserved circulation~around a contour fixed in space b
causev50) should be
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G52t R
C

~“3B0!3B0

4pr0
•dr1 R

C

R03B0

4pr0
•dr .

~2.34!

On the face of it, the time dependence of the first term in t
simple situation puts the claimed circulation conservat
law in jeopardy. However, according to the magnetic Eu
equation ~2.5!, the first integrand here is equal to“U
1“p/r0 which, by virtue of Eq.~2.19! and the isentropic
nature of the fluid, is a perfect gradient~for isentropic flow
“p/r05“w). Hence the first integral vanishes, and the c
culation is indeed time independent as required by our th
rem.

As a second example consider an axisymmetric differ
tially rotating fluid exhibiting a purely poloidal magneti
field. Let the flow also be isentropic and stationary. W
choose to work in cylindrical coordinates$%,f,z%; the caret
will denote a unit vector in the stated direction. It then fo
lows thatr5r0(r ), B5B0(r ), andv5V%f̂, whereV(%,z)
is the angular velocity of the fluid. It is well known@23,24#
that for axisymmetric fields the curl of a poloidal field is
toroidal one, and the toroidal field has only af̂ component.
Therefore, the electric current densityJ5“3B/(4p) is ev-
erywhere collinear withv and time independent. Since th
problem is stationary,V satisfies Ferraro’s@25,24# law of
isorotationB•“V50. In addition the field must be torque
free @24#, i.e., no Lorentz force in thef̂ direction. This con-
dition is identically satisfied for a purely poloidal field. Com
bining all of the above we get the following solution of E
~2.17!:

R52tJ. ~2.35!

According to Eq.~2.29! the conserved circulation shoul
be

G5 R
C
V%2df2t R

C

J3B0

4pr0
•dr , ~2.36!

where we have exploited the axisymmetry to rewrite the fi
term. We now verify that this circulation is indeed co
served. Because of the differential rotation, the contourC is
gradually deformed in the azimuthal direction. The diffe
encedf in the azimuthal coordinates between two infinite
mally close fluid elements lying onC can be written asdf
5df01t dV where df0 is the initial difference in azi-
muthal coordinates whiledV is the difference between th
elements’ angular velocities. Hence we have

R
C
V%2df5 R

C
V%2df01t R

C
V%2dV. ~2.37!

Note that the first term is time independent while the sec
one is linear in time.

The magnetic Euler equation~2.5! in cylindrical coordi-
nate reads

2V2%%̂52
“p

r0
2“U1

J3B0

4pr0
. ~2.38!
is
n
r

-
o-

-

t

-

d

Again, by the isentropic condition we can write“p/r0
5“w. Taking the integral roundC of both sides of Eq.
~2.38! we have

2 R
C
V2%d%5 R

C

J3B0

4pr0
•dr . ~2.39!

Substituting from Eq.~2.39! and Eq.~2.37! into Eq. ~2.36!
we get

G5 R
C
V%2df01t R

C
V%2dV1t R

C
V2%d%

5 R
C
V%2df01

t

2 R
C
d~V2%2!

5 R
C
V%2df0 , ~2.40!

andG is indeed time independent. Note that it is possible
add toR in Eq. ~2.35! an arbitrary time independent soleno
dal vector fieldR0(r ) which satisfiesR03v5“x. However,
as already stressed in the previous subsection, this will o
add toG a time independent quantity.

It is important to note that, although the example spec
cally relates to an axisymmetric problem, Eq.~2.35! applies
to all stationary MHD flows that haveJ collinear with v.
Accordingly,G will be conserved in all such flows.

III. RELATIVISTIC VARIATIONAL PRINCIPLE

In this section we formulate a Lagrangian density f
MHD flow in the framework of general relativity~GR!.
Greek indices run from 0 to 3. The coordinates are deno
xa5(x0,x1,x2,x3); x0 stands for time. A comma denotes th
usual partial derivative; a semicolon covariant different
tion. Our signature is$2,1,1,1%. We continue to takec
51.

A. Relativistic MHD equations

The general relativistic equations for MHD were form
lated by Lichnerowicz@26#, Novikov and Thorne@27#,
Carter@17#, Bekenstein and Oron@1#, and others. The role o
the mass conservation equation~2.1! is taken over by the law
of particle number conservation,

Na
;a5~nua! ;a50, ~3.1!

whereNa is the particle number four-current density,n the
particle proper number density, andua the fluid four-velocity
field normalized byuaua521. If s represents the entrop
per particle~not per unit mass as in Sec. II!, then the assump
tion of ideal adiabatic flow, Eq.~2.2!, can be put in the form

~sNa! ;a50 or uas,a50. ~3.2!

Because the flow is assumed adiabatic, the ene
momentum tensor for the magnetized fluid is that of an id
fluid augmented by the electromagnetic energy-momen
tensor:
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Tab5pgab1~p1r!uaub1~FagFb
g2 1

4 FgdFgdgab!/~4p!.
~3.3!

Herer represents the fluid’s energy proper density~includ-
ing rest masses! and p the scalar pressure~again assumed
isotropic!, while Fab denotes the electromagnetic field te
sor. As usual the covariant divergenceTab

;b must vanish
~energy-momentum conservation!. In consequenceTab

;b
1uaugTgb

;b50, which can be recast as

~r1p!ubua
;b52~gab1uaub!p,b1FabFb

g
;g /~4p!.

~3.4!

The termaa[ubua
;b stands for the fluid’s acceleration fou

vector. The effects of gravitation are automatically includ
by the appeal to curved metric and covariant derivativ
This equation parallels Eq.~2.5!; as usual in GR the pressur
contributes alongside the energy density to the inertia.
electromagnetic field tensor is subject to Maxwell’s equ
tions

Fab
;b54p j a, ~3.5!

Fab,g1Fbg,a1Fga,b50, ~3.6!

wherej a denotes the electric four-current density. Putting
this together we have the GR MHD Euler equation

~r1p!aa52habp,b1Fab j b , ~3.7!

where we have introduced the projection tensor

hab[gab1uaub. ~3.8!

The above equations do not completely specify MH
flow ~as opposed to flow of a generic magnetofluid!. For any
flow carrying an electromagnetic field, the~antisymmetric!
Faraday tensorFab may be split into electric and magnet
vectors with respect to the flow:

Ea5Fabub, ~3.9!

Ba5 * Fbaub[ 1
2 ebagdFgdub. ~3.10!

Here eabgd is the Levi-Cività totally antisymmetric tenso
@e01235(2g)1/2 with g denoting the determinant of the me
ric gab# and* Fab is the dual ofFab . In the frame moving
with the fluid, these four-vectors have only spatial pa
which correspond to the usualE and B, respectively. The
inversion of Eqs.~3.9! and ~3.10! is

Fab5uaEb2ubEa1eabgdugBd. ~3.11!

For an infinitely conducting~perfect MHD! fluid, the electric
field in the fluid’s frame must vanish, i.e.,

Ea5Fabub50. ~3.12!

This corresponds to the usual MHD conditionE1v3B50.

B. Relativistic Lagrangian density

Inspired by Schutz’s@16# Lagrangian density for pure flu
ids in GR, we now propose a Lagrangian density for G
MHD flow which reproduces Eqs.~3.1!, ~3.2!, ~3.5!–~3.7!,
d
s.

e
-

ll

s

and~3.12!. Like Schutz we include Lin’s term, which prove
essential to our subsequent proof of the existence of a ci
lation theorem. The proposed Lagrangian density is

L52r~n,s!2FabFab/~16p!1fNa
;a

1h~sNa! ;a1l~gNa! ;a1taFabNb. ~3.13!

Now in GR the scalar densityL(2g)1/2 replacesL in the
action ~2.6!, and is what enters in the Euler-Lagrange equ
tions ~2.7!. The covariant derivatives cause no problem;
example, (2g)1/2fNa

;a5f@(2g)1/2Na# ,a , whose variation
with respect toNa is easily integrated by parts.

As in the nonrelativistic case,f is the Lagrange multi-
plier associated with the conservation of particle num
constraint, Eq.~3.1!, h is that multiplier associated with th
adiabatic flow constraint, Eq.~3.2!, andl is that associated
with the conservation along the flow of Lin’s quantityg. We
view g, Na, ands as the independent fluid variables, whilen
andua are determined by the obvious relations

2NaNa5n2, ua5n21Na. ~3.14!

Strictly speaking, one should include inL a new Lagrange
multiplier times the constrained expressionNaNa1n2.
Rather than clutter upL further, we enforce this constrain
below by hand.

As usual, we view the vector potentialAa , rather than the
electromagnetic field tensor Fab5Ab;a2Aa;b5Ab,a
2Aa,b , as the independent electromagnetic variable. In c
sequence, the Maxwell Eqs.~3.6! are satisfied as identities
The last term inL enforces the ‘‘vanishing of electric field’
constraint, Eq.~3.12!; ta is a Lagrange multiplier four-vecto
field. Because here we enforce the ‘‘vanishing of elect
field’’ rather than the equivalent flux freezing conditio
~2.4!, theta is more likeR of Sec. II B. than likeK . Not all
of ta is physically meaningful. For suppose we add an ar
trary functionf (xb) multiplied byNa to ta. This increments
the Lagrangian density byf NaFabNb, which vanishes iden-
tically by the antisymmetry ofFab . Sota andta1 f Na are
physically equivalent. We shall exploit this to subtract fro
ta its component alongua. So henceforth we may take
that taua50.

Much freedom is still left inta. Suppose we add to it a
term proportional ton21Ba. By Eqs.~3.9!–~3.11!, this adds
to the Lagrangian density the termEaBa. Of course we can-
not take this to vanish at the Lagrangian level because
have not yet obtained the freezing-in condition~3.12! from
it. However, it is known thatBaEa5 1

4 eabgdFabFgd . By
introducing the potential Aa we can write this as
1
2 @eabgdFabAg# ;d2 1

2 eabgdFab;dAg , where we have used
the fact thateabgd has vanishing covariant derivatives. O
viously the last term vanishes by virtue of Maxwell’s equ
tions ~3.6!, which are identities in the present approac
When multiplied by (2g)1/2, the first term becomes a perfe
derivative. Such a term, when added to the integral form
the Lagrangian, is known not to affect its physical conte
Thus ta and ta1const3n21Ba are physically equivalent
and this transformation respects the conditiontaua50 be-
cause Baua50 @see Eq. ~3.10!#. However, there is not
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enough freedom in the constant to allow us to eliminate
component ofta alongBa. But in Sec. III E we shall exploit
what we have just found.

C. Equations of motion

We can now derive the equations of motion. Variation
f recovers the conservation of particlesNa

;a . Variation of
l with subsequent use of the previous result yields

g ,aua50. ~3.15!

If we vary g we get

l ,aua50. ~3.16!

These two results are precise analogs of Eqs.~2.9! and
~2.10!; they inform us thatg and l are both locally con-
served with the flow. In view of the thermodynamic relatio
n21(]r/]s)n5T, with T the locally measured fluid tempera
ture, variation ofs gives

uah ,a52T; ~3.17!

this is the analog of Eq.~2.11!.
We now varyNa using the obvious consequence of E

~3.14!,

dn52uadNa, ~3.18!

together with the thermodynamic relation@27# involving the
specific enthalpym,

m[~]r/]n!s5n21~r1p!; ~3.19!

we get the GR analog of Eq.~2.13!,

mua5f ,a1sh ,a1gl ,a1tbFab . ~3.20!

The importance of Lin’sg is again clear here; in the pur
isentropic fluid case (Fab50 ands5const), the Khalatnikov
vorticity tensor given by

vab5~mub! ,a2~mua! ,b5~gl ,b! ,a2~gl ,a! ,b
~3.21!

would vanish in the absence ofg, thus constraining us to
discuss only irrotational flow.

By contracting Eq.~3.20! with ua and usinguaua521
as well as Eqs.~3.12! and~3.16!, ~3.17!, we get the following
GR version of Eq.~2.12!:

f ,aua52m1Ts. ~3.22!

Thus the proper time rate of change off along the flow is
just minus the specific Gibbs energy or chemical potent
The apparent difference between the result here and
~2.12! stems from the fact that proper time rate~here! and
coordinate time rate~there! differ by gravitational redshift
and time dilation effects. These effects are not noticea
when one compares Eq.~3.17! with ~2.11! because the firs
refers to locally measured temperature and the second to
bal temperature; these two temperatures differ by the s
factors as do proper and coordinate time.
e

f

.

l.
q.

le

lo-
e

Turn now to the variation ofAa . Because of the antisym
metry ofFab , the last term of the Lagrangian Eq.~3.13! can
be written as (tbNa2taNb)Aa,b . The variation ofAa in the
corresponding term in the action produces, after integra
by parts, the term@(2g)1/2(taNb2tbNa)# ,bdAa . Because
for any antisymmetric tensor tab, (2g)1/2tab

;b
5@(2g)1/2tab# ,b , this finally leads to the equation

Fab
;b54p~taNb2tbNa! ;b . ~3.23!

Comparison with Eq.~3.5! shows that this result gives us
representation of the electric current densityj a as the diver-
gence of the bivectortaNb2tbNa. Such a representatio
makes the conservation of charge (j a

;a50) an identity be-
cause the divergence of the divergence of any antisymme
tensor vanishes. This equation is the GR analog of
~2.17!. Formally, Eq.~3.23! determines the Lagrange mult
plier four-vectorta, modulo the freedom inherent in it.

D. MHD Euler equation in general relativity

Our central task now is to show that the equations in S
III C lead uniquely to the GR MHD Euler equation~3.7!. We
begin by writing the Khalatnikov vorticityvba in two forms,

vba5m ,bua2m ,aub1mua;b2mub;a , ~3.24!

as well as by means of Eq.~3.20!,

vba5s,bh ,a2s,ah ,b1g ,bl ,a2g ,al ,b1td
;bFad

2td
;aFbd1tdFad;b2tdFbd;a . ~3.25!

Contracting the left hand side of the first withNa, recalling
Eq. ~3.14!, and that by normalizationuaua;b50 whereas
ubua;b5aa , the fluid’s four-acceleration, we get

vbaNa52nm ,b2nm ,auaub2nmab52nhb
am ,a2nmab .

~3.26!

Now contracting Eq.~3.25! with Na and using Eqs.
~3.15!–~3.17! and ~3.12! to drop a number of terms we get

vbaNa52nTs,b2td
;aFbdNa1tdFad;bNa2tdFbd;aNa.

~3.27!

By virtue of Eq. ~3.2!, 2nTs,b is the same as
2nThb

as,a . It is convenient to use the thermodynam
identity dm5n21dp1Tds, which follows from Eq.~3.19!,
and the first lawd(r/n)5Tds2pd(1/n), to replace in Eq.
~3.27! 2nTs,b by hb

a(2nm ,a1p,a). Equating our two ex-
pressions forvbaNa gives, after a cancellation,

2~nmab1hb
ap,a!

52td
;aFbdNa1tdFad;bNa2tdFbd;aNa.

~3.28!

The last two terms in this equation can be combined i
a single one by virtue of Eq.~3.6!, which, as well known, can
be written with covariant as well as ordinary derivative
Further, by Eq.~3.19! we may replacenm by r1p. In this
manner we get
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~r1p!ab52hb
ap,a1Fba;dtdNa1Fbdtd

;aNa.
~3.29!

The termtd
;aNa here can be replaced by two others with t

help of Eq.~3.23! if we take into account thatNb
;b50:

~r1p!ab52hb
ap,a1FbdFda

;a /~4p!

1Fba;dtdNa1Fbd~taNd! ;a . ~3.30!

We note that the last two terms on the right hand side co
bine into (FbaNatd) ;d which vanishes by Eq.~3.12!. Now
substituting from the Maxwell equations~3.5! we arrive at
the final equation

~r1p!ab52hb
ap,a1Fbd j d, ~3.31!

which is the correct GR MHD Euler equation~3.7!. We have
not used any information aboutta beyond Eq.~3.23!; hence
Euler’s equation is valid for all choices ofta. Since we are
able to obtain all equations of motion for GR MHD from o
Lagrangian density, we may regard it as correct, and go o
look at some consequences.

E. New circulation conservation law

Equations~3.20! and~3.15!, ~3.16! allow us to generalize
the conserved circulation of Sec. II D to relativistic perfe
MHD. Let G be the line integral

G5 R
C
zadxa, ~3.32!

whereC is, again, a closed curve drifting with the fluid, an

za[mua2tbFab . ~3.33!

According to Eq.~3.20!, za5f ,a1sh ,a1gl ,a . Sincef ,a
is a gradient, its contribution toG vanishes. Likewise, for
isentropic flow (s5const) the term involvingsh ,a makes no
contribution toG. Thus

G5 R
C
gl ,adxa5 R

C
gdl. ~3.34!

By Eqs.~3.15! and ~3.16! both g andl are conserved with
the flow. ThusG is conserved along the flow. Note that b
virtue of g ’s presenceG need not vanish.

In the absence of electromagnetic fields and in the n
relativistic limit (m→m where m is a fluid particle’s rest
mass!, G for a curveC taken at constant time reduces
Kelvin’s circulation. On this ground our result can be co
sidered a generalization of Kelvin’s circulation theorem
general relativistic MHD. We have gone here beyond B
enstein and Oron’s original result@1# in that no symmetry is
necessary for the circulation to be conserved.

To manifestly exhibit the conserved circulation, one h
to know ta explicitly. The first step is to understand th
freedom left inta beyond that discussed in Sec. III B. Th
second is to determineta in a specific flow, exploiting for
this the symmetries and other information. Below we addr
the first step; the second is left mainly to future publicatio
-

to

t

-

-

-

s

s
.

Given a specific MHD flow as background, let us define
generic test fieldf ab52 f ba that satisfies Maxwell’s homo
geneous equations~3.6! as well as the freezing-in conditio
~3.12!, e.g.,ea[ f abub50. We think of f ab as very weak,
so that it does not disturb the MHD flow or the spacetim
geometry; it is a passive tensor. Becausef abub50, f ab has
only three independent components. Therefore, its full c
tent is reflected in the ‘‘magnetic four-vector’’ba

[ 1
2 ebagd f gdub, which is obviously orthogonal toua . The

transformationta→ta1kn21ba (k a real constant! is not a
symmetry of the Lagrangian. However, it does not distu
the inhomogeneous Maxwell equations~3.5! and~3.23!. This
is because the change inta merely adds to the electric cur
rent the term (baub2bbua) ;b5(2g)21/2@(2g)1/2(baub

2bbua)# ,b . Because of the conditionea50, we may easily
invert the analog of Eq.~3.11! to get baub2bbua

5 1
2 eabgd f gd . But, since (2g)1/2eabgd is just the constant

antisymmetric symbol, our assumed equationsf ab,g1 f ga,b

1 f bg,a50 imply that (baub2bbua) ;b50, so that the Max-
well equations~3.23! are invariant underta→ta1kn21ba.
So is the Euler equation, since its derivation used only
information aboutta inherent in Eq.~3.23!.

The expression forua , Eq. ~3.20!, does seem to chang
under ta→ta1kn21ba, and we also note thatG→G
1krn21bbFabdxa. Now since the ‘‘magnetic four-vector’’
ba is frozen in, like any suchinfinitesimalfield, it evolves in
such a way thatn21ba gives for all time that part of the
spacetime separation of two neighboring fluid elements
is orthogonal toua @1#; cf. the discussion after Eq.~2.32!.
Thus n21ba can be employed to define a thin closed st
dragged with the fluid such that one of its edges coinci
with the curveC. Therefore, the incrementrn21bbFabdxa is
just the conserved magnetic flux through this strip. Eviden
the transformationta→ta1kn21ba has not changed the na
ture of the conservation law forG, but only added a trivially
conserved quantity to it.

Now the MHD flow $Ba,ua,n,r,m% is evidently un-
changed because neither the MHD Euler equation~3.4! nor
Maxwell’s equations were changed, so we must conclu
that, in the expression forua, Eq. ~3.20!, the change of the
tbFab term must be compensated by suitable changes in
pair of Lagrange multipliersf1sh and l ~since we are
assumings5const). They are capable of this becauseba has
only two independent components, for the conditionbaua
50 eliminates one of the four. In additionba comes from
f ab which satisfies Eqs.~3.6!; in particular, f 12,31 f 31,2
1 f 23,150 in the chosen coordinates. But since no time d
rivatives appear in it, this last equation serves as an in
constraint onba just as the Gauss equation“•B50 does for
the true magnetic field. Accordingly, one further relation e
ists between components ofba so that the genericba con-
tains only two free functions. Thus the change intbFab can
be taken up by changes in the two functionsf1sh andl so
that mua is unchanged.

Note that it is not possible to ‘‘get rid’’ ofta by means of
the transformationta→ta1kn21ba because, as we sha
make clear presently,ta andba obey different equations o
motion. Thus there must be a residual part ofta that is not
changed by the transformations. It is this part that is resp
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sible for the conserved circulation, so that the conserva
of G cannot be reduced to magnetic flux conservation.

The following algorithm can be used to findta. Max-
well’s inhomogeneous equations~3.23!, which say that the
divergence of a certain tensor vanishes, can always
‘‘solved’’ by the prescription

Fab24p~taNb2tbNa!5 1
2 eabgdFgd , ~3.35!

where the new fieldFgd just has to satisfy Maxwell’s homo
geneous equations~3.6!, i.e., Fgd[Ad,g2Ag,d . Taking the
dual of Eq.~3.35! with the help of the identityegdabeabmn

522(dg
mdd

n2dg
ndd

m) gives

* Fgd24pegdabtaNb52Fgd . ~3.36!

Contracting this equation withug gives the further require
ment onFab :

F dgug5Bd , ~3.37!

where we have used Eq.~3.10!. The Fdg can always be
solved for: because of gauge freedom there are three i
l
.

. A

ki,
n

be

e-

pendent components inAa , and this is enough to find a
solution for an arbitrary fieldBd obeying Baua50 ~thus
three components at most!. If fact, Bd does not determine
Fdg uniquely: if one adds to this last one of the frozen-inf gd
we discussed earlier in this section~which also satisfy the
homogeneous Maxwell equations!, Eq.~3.37! is still satisfied
becausef dgug50.

We getta by contracting Eq.~3.35! by ub and remem-
bering thatFabub50 andtbub50. Thus

ta5~8pn!21eabgdFgdub . ~3.38!

It is interesting thatBd plays the role of the electric part o
Fdg while ta enters like the magnetic part of this tensor; c
Eq. ~3.10! ~but becauseF dgugÞ0, ta evolves differently
from a magnetic type field likeBa or theba). It should also
be clear now that the freedom in redefiningFgd→Fgd
1 f gd is equivalent to the changesta→ta1kn21ba we con-
sidered earlier in this section. This freedom can be explo
together with the symmetries to simplify the problem
solving explicitly for ta in any specific MHD flow.
-

-

y-

,

@1# J.D. Bekenstein and E. Oron, Phys. Rev. D18, 1809~1978!.
@2# J.D. Bekenstein, Astrophys. J.319, 207 ~1987!.
@3# J.W. Herivel, Proc. Cambridge Philos. Soc.51, 344 ~1955!.
@4# C. Eckart, Phys. Fluids3, 421 ~1960!.
@5# C.C. Lin, in Liquid Helium, Proceedings of the Internationa

School of Physics ‘‘Enrico Fermi,’’ Course XXI, edited by G
Careri ~Academic Press, New York, 1963!.

@6# R.L. Seliger and F.R.S. Witham, Proc. R. Soc. London, Ser
305, 1 ~1968!.

@7# L. Mittag, M. J. Stephen, and W. Yourgrau, inVariational
Principles in Dynamics and Quantum Theory, edited by W.
Yourgrau and S. Mandelstam~Dover, New York, 1968!.

@8# C. Eckart, Phys. Rev.54, 920 ~1938!.
@9# F.S. Henyey, Phys. Rev. A26, 480 ~1982!.

@10# W.A. Newcomb, Nucl. Fusion Suppl.2, 451 ~1962!.
@11# T.S. Lundgren, Phys. Fluids6, 1313~1963!.
@12# P. Penfield, Jr., Phys. Fluids9, 1184~1966!.
@13# A.H. Taub, Phys. Rev.94, 1468~1954!.
@14# A.H. Taub, Commun. Math. Phys.15, 235 ~1969!.
@15# T. Kodama, Th.-H. Elze, Y. Hama, M. Makler, and J. Rafels

J. Phys. G25, 1935~1999!.
@16# B.F. Schutz, Phys. Rev. D2, 2762~1970!.
@17# B. Carter, inActive Galactic Nuclei, edited by C. Hazard and

S. Mitton ~Cambridge University Press, Cambridge, 1977!.
@18# B. Carter, inTopological Defects and Nonequilibrium Dynam

ics of Symmetry Breaking Phase Transitions, 1999 Les
Houches Lectures, edited by Y. Bunkov and H. Godfrin~Klu-
wer, Dordrecht, 2000!.

@19# A. Achterberg, Phys. Rev. A28, 2449~1983!.
@20# C. Thompson, Phys. Rev. D57, 3219~1998!.
@21# J.S. Heyl and L. Hernquist, Phys. Rev. D59, 045 005~1999!.
@22# L.D. Landau and E.M. Lifshitz,Electrodynamics of Continu-

ous Media, 2nd ed.~Pergamon, Oxford, 1984!, p. 227.
@23# S. Chandrasekhar,Hydrodynamic and Hydromagnetic Insta

bility ~Clarendon Press, Oxford, 1961!.
@24# L. Mestel,Stellar Magnetism~Clarendon Press, Oxford, 1999!.
@25# V.C.A. Ferraro, Mon. Not. R. Astron. Soc.97, 458 ~1937!.
@26# A. Lichnerowicz,Relativistic Hydrodynamics and Magnetoh

drodynamics~Benjamin, New York, 1967!.
@27# I.D. Novikov and K.S. Thorne, inBlack Holes, edited by B.S.

DeWitt and C.M. DeWitt~Gordon and Breach, New York
1973!.


